
CS761 Spring 2017 Homework 3

Assigned Apr. 6, due Apr. 20

Instructions:

• Homeworks are to be done individually.

• Typeset your homework in latex using this file as template (e.g. use pdfla-
tex). Show your derivations.

• Hand in the compiled pdf (not the latex file) online. Instructions will be
provided. We do not accept hand-written homeworks.

• Homework will no longer be accepted once the lecture starts.

• Fill in your name and email below.

Name: David Merrell
Email: dmerrell@cs.wisc.edu
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(4 questions, 25 points each)

1. The Wisconsin State Climatology Office keeps a record on the number
of days Lake Mendota was covered by ice at http://www.aos.wisc.edu/

~sco/lakes/Mendota-ice.html. The article DETERMINING THE ICE
COVER ON MADISON LAKES at http://www.aos.wisc.edu/~sco/

lakes/msn-lakes_instruc.html serves as a fine example of the Wiscon-
sin tradition to integrate science with beer.

(a) As with any real problems, the data is not as clean nor as organized
as one would like for machine learning. Produce a clean data set
starting from 1855-56 and ending in 2016-17 for the output variable
DAYS. You do not need to attach your data set, but please produce a
scatter plot of year vs. DAYs. Show us the sample mean and sample
variance (round to 5 digits after decimal point).

SOLUTION:

Sample mean: 102.55556
(Biased) Sample Variance: 380.20988
(Unbiased) Sample Variance: 382.57143

(b) Perform ordinary least squares to estimate a linear model

y = α+ βx

where y is DAYS and x is the year. For example, for 1855-56 the
year is 1855. Show us α̂, β̂, and an estimate of the standard error on
β: ŝ.e(β̂).

2

http://www.aos.wisc.edu/~sco/lakes/Mendota-ice.html
http://www.aos.wisc.edu/~sco/lakes/Mendota-ice.html
http://www.aos.wisc.edu/~sco/lakes/msn-lakes_instruc.html
http://www.aos.wisc.edu/~sco/lakes/msn-lakes_instruc.html


SOLUTION:

α̂: 474.99182
β̂: -0.19242

(c) Perform nonparametric kernel regression using the Nadaraya-Watson
estimator on this data set (input: year, output: days). Use the
Gaussian kernel. Write your own code for the Nadaraya-Watson es-
timator. Show us the leave-one-out score (Equation 23 in lecture
notes http://pages.cs.wisc.edu/~jerryzhu/cs761/kde.pdf) for
bandwidth h = 10−1, 10−0.9, 10−0.8, . . . , 102, respectively.

SOLUTION:

Of the bandwidths considered, h = 1.2 yielded the lowest leave-one-
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out score.

(d) For h = 10−1, 102 and the optimal h you found, respectively, plot the
function estimated by Nadaraya-Watson.

SOLUTION:

2. Consider a Gaussian Process f ∼ GP (m, k) over R with mean function

m(x) = sin(
πx

100
) +

x

100

and kernel function

k(x, x′) =
1

16
exp

(
− (x− x′)2

2σ2

)
.

(a) Let σ = 40 (note: this is the standard deviation, not variance). Ap-
proximate the random function f by drawing f(1), f(2), . . . , f(100)
from the appropriate marginal distribution. Plot the curve by con-
necting the dots. Show six such random functions on the same plot,
together with the mean function m.

SOLUTION:
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(b) Do the same with σ = 10.

SOLUTION:

(c) Do the same with σ = 1.

SOLUTION:
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(d) Let σ = 40. Now let us observe f(40) = 0 and f(120) = 1. Now
draw f from the posterior Gaussian Process conditioned on these two
observations. Again, show six such f from the posterior on the same
plot.

SOLUTION:

(e) Do the same with σ = 10.

SOLUTION:
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(f) Do the same with σ = 1.

SOLUTION:

3. Imagine a stick of length a. On the ground, draw parallel lines a apart.
Randomly throw the stick to the ground. Each time, the stick may or
may not intersect with a line.

(a) What is the probability that the stick intersects with a line? Show
your work.
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SOLUTION:

We observe that the configuration of the stick with respect to the lines
is fully defined by variables X and θ, where X is the displacement
of one end of the stick from one of the lines, and θ is the orientation
of the stick—i.e., θ = 0 when the stick is perpendicular to the lines,
and θ = ±π2 when the stick is parallel to them.

If the stick is tossed randomly, then we can assume X ∼ U(0, a) and
θ ∼ U(−π2 ,

π
2 ). Some trigonometry tells us that the stick crosses the

next line when
X + a cos θ > a.

So the probability of the stick crossing a line is given by

P (crossing) = P (X + a cos θ > a

= P (X > a− a cos θ)

Visually, this is equivalent to finding the area of the region shaded
red in the above figure, and dividing it by the area of the enclosing
rectangle:

P (X > a− a cos θ) =
1

aπ

∫ π/2

−π/2
a cos θdθ

=
1

π

∫ π/2

−π/2
cos θdθ

=
1

π
[sin θ]

π/2
−π/2

=
2

π
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(b) Propose a Monte Carlo method for estimating π based on this.

SOLUTION: From the previous result, it follows that we can esti-
mate π by sampling uniformly distributed Xi and θi, counting the
fraction of instances where Xi > a− a cos θi, and dividing 2 by that
fraction.

(c) Actually perform the experiment. Tell us about it.

SOLUTION:
This Monte Carlo method requires very large samples in order to
provide an estimate of π with any precision. For a range of 5 sample
sizes, we obtained 1000 estimates for π and computed the sample
standard deviation of those estimates; the result is shown in the plot
below:

The main result is that standard deviation only drops to ∼ 0.01 when
the sample size is ∼ 105; in other words, we need to throw the stick
tens of thousands of times in order to reliably estimate π within two
digits of precision.
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We show a histogram of the estimates with a sample size of 105 below:

4. Consider an undirected graphical model on a binary tree with 15 nodes.
Each node takes value in {−1, 1}. All edges share the same potential
function ψ(u, v) = exp(αuv), where u, v are a pair of parent-child nodes.

(a) Write down the joint probability distribution defined by this graphi-
cal model.

SOLUTION:

p(~x) =
1

Z(α)

∏
(i,j)∈E

exp(αxixj)

=
1

Z(α)
exp

α ∑
(i,j)∈E

xixj

 ,

Where Z(α) is a partition function that we avoid trying to write
down.

(b) Let α = 1. Let r be the root node and s be the left-most leaf node.
Use brute force (enumerating all trees) to compute p(r | s = 1).

SOLUTION:
A brute force calculation yields p(r | s = 1) = 0.72087 . . ..

(c) Implement Gibbs sampling to estimate p(r | s = 1). Start with the
all-minus-1 tree except for s = 1. Go over levels in top-down order,
left-to-right within each level. Discard a burn-in of 104 samples. Use
the next 105 samples for estimation. Do not perform thinning.
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SOLUTION:
Gibbs sampling with the prescribed burn-in and no thinning consis-
tently under-approximates p(r | s = 1), typically yielding numbers
between 0.66 and 0.7. However, we find that thinning remedies this,
yielding less-biased clustering around 0.72.

(d) Implement Metropolis-Hastings sampling to estimate p(r | s = 1).
Clearly define and discuss your proposal distribution (which has to be
different than Gibbs). Use the same burn-in and number of samples
as above.

SOLUTION:
We implemented Metropolis-Hastings with the following proposal dis-
tribution:

q(~x′ | ~x) =
1

Z

∏
i∈N

exp(−x′ixi)

i.e., each node has its own independent proposal distribution,

qi(x
′
i | xi) =

1

e+ e−1
exp(−x′ixi).

In other words: qi will propose change for xi with probability e/(e+
e−1) = .8808 . . .. Once ~x′ has been proposed in this way, it will be
accepted with probability

a = min

(
1,
p(~x′)

p(~x)

)
since q is symmetric.

This implementation provided estimates of p(r | s = 1) that clustered
around 0.72, even without thinning.
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