CS761 Spring 2017 Homework 3

Assigned Apr. 6, due Apr. 20

Instructions:

Homeworks are to be done individually.

Typeset your homework in latex using this file as template (e.g. use pdfla-
tex). Show your derivations.

Hand in the compiled pdf (not the latex file) online. Instructions will be
provided. We do not accept hand-written homeworks.

Homework will no longer be accepted once the lecture starts.

Fill in your name and email below.

Name: David Merrell
Email: dmerrell@cs.wisc.edu



(4 questions, 25 points each)

1. The Wisconsin State Climatology Office keeps a record on the number
of days Lake Mendota was covered by ice at http://www.aos.wisc.edu/
~sco/lakes/Mendota-ice.html. The article DETERMINING THE ICE
COVER ON MADISON LAKES at http://www.aos.wisc.edu/~sco/
lakes/msn-lakes_instruc.html serves as a fine example of the Wiscon-
sin tradition to integrate science with beer.

(a) As with any real problems, the data is not as clean nor as organized
as one would like for machine learning. Produce a clean data set
starting from 1855-56 and ending in 2016-17 for the output variable
DAYS. You do not need to attach your data set, but please produce a
scatter plot of year vs. DAYs. Show us the sample mean and sample
variance (round to 5 digits after decimal point).

SOLUTION:

Lake Ice in Madison over Time

160 | .
140} .

L ]
120 e
100 - . o P ‘ﬁ' e o '

80| * = s < *.

Days of Lake Ice
L]
L]
L]
L]
L ]
»
L ]
L ]
L ]
L ]

401

20 .

0 1860 lSISO lQhO 19‘20 19I40 1960 19:50 20I00
Year

Sample mean: 102.55556

(Biased) Sample Variance: 380.20988

(Unbiased) Sample Variance: 382.57143

(b) Perform ordinary least squares to estimate a linear model
y=a+ px

where y is DAYS and z is the year. For example, for 1855-56 the
year is 1855. Show us &, 3, and an estimate of the standard error on

8: 5(8).


http://www.aos.wisc.edu/~sco/lakes/Mendota-ice.html
http://www.aos.wisc.edu/~sco/lakes/Mendota-ice.html
http://www.aos.wisc.edu/~sco/lakes/msn-lakes_instruc.html
http://www.aos.wisc.edu/~sco/lakes/msn-lakes_instruc.html

SOLUTION:

a

3:

Linear Least-Squares Regression
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Perform nonparametric kernel regression using the Nadaraya-Watson
estimator on this data set (input: year, output: days). Use the
Gaussian kernel. Write your own code for the Nadaraya-Watson es-
timator. Show us the leave-one-out score (Equation 23 in lecture
notes http://pages.cs.wisc.edu/~jerryzhu/cs761/kde.pdf) for
bandwidth A = 1071,10799,10798, ..., 102, respectively.
SOLUTION:

550 Lea}ve—One—O}lt Score \:’S h

500 |

450 |

400 -

350 +

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

300

‘:Dguj(h)

Of the bandwidths considered, h = 1.2 yielded the lowest leave-one-
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out score.

(d) For h =1071,10% and the optimal h you found, respectively, plot the
function estimated by Nadaraya-Watson.

SOLUTION:

Kernel Density Regression
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2. Consider a Gaussian Process f ~ GP(m, k) over R with mean function

v x
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m(z) = sin(y55) + 155

and kernel function

1 r—a')?
k(z,2") = 76 &P (—(202)> :

(a) Let o = 40 (note: this is the standard deviation, not variance). Ap-
proximate the random function f by drawing f(1), f(2),..., f(100)
from the appropriate marginal distribution. Plot the curve by con-
necting the dots. Show six such random functions on the same plot,
together with the mean function m.

SOLUTION:



25 Samples from our Gaussian Process, with o =40
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(b) Do the same with o = 10.

SOLUTION:
25 Samples from our Gaussian Process, with ¢ =10
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(¢) Do the same with o = 1.
SOLUTION:
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(d) Let 0 = 40. Now let us observe f(40) = 0 and f(120) = 1. Now
draw f from the posterior Gaussian Process conditioned on these two
observations. Again, show six such f from the posterior on the same
plot.

SOLUTION:
25 Samples Conditioned on 40, 120; =40
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(e) Do the same with o = 10.
SOLUTION:
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Samples Conditioned on 40, 120; o0 =10
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(f) Do the same with o = 1.

SOLUTION:
25 Samples Conditioned on 40, 120; =1
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3. Imagine a stick of length a. On the ground, draw parallel lines a apart.
Randomly throw the stick to the ground. Each time, the stick may or
may not intersect with a line.

(a) What is the probability that the stick intersects with a line? Show
your work.



SOLUTION:

(F:a)

(.0)

We observe that the configuration of the stick with respect to the lines
is fully defined by variables X and 6, where X is the displacement
of one end of the stick from one of the lines, and 6 is the orientation
of the stick—i.e., 8 = 0 when the stick is perpendicular to the lines,
and ¢ = £75 when the stick is parallel to them.

If the stick is tossed randomly, then we can assume X ~ U(0,a) and
0 ~U(—%,%). Some trigonometry tells us that the stick crosses the
next line when

X 4+ acosf > a.
So the probability of the stick crossing a line is given by

P(crossing) = P(X +acosf > a
= P(X >a—acosf)

Visually, this is equivalent to finding the area of the region shaded
red in the above figure, and dividing it by the area of the enclosing
rectangle:
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(b) Propose a Monte Carlo method for estimating 7 based on this.
SOLUTION: From the previous result, it follows that we can esti-
mate m by sampling uniformly distributed X; and 6;, counting the
fraction of instances where X; > a — acos#;, and dividing 2 by that
fraction.

(¢) Actually perform the experiment. Tell us about it.
SOLUTION:
This Monte Carlo method requires very large samples in order to
provide an estimate of m with any precision. For a range of 5 sample
sizes, we obtained 1000 estimates for m and computed the sample
standard deviation of those estimates; the result is shown in the plot
below:

Standard Deviation vs. MC Sample Size
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The main result is that standard deviation only drops to ~ 0.01 when
the sample size is ~ 10°; in other words, we need to throw the stick
tens of thousands of times in order to reliably estimate 7 within two
digits of precision.



We show a histogram of the estimates with a sample size of 10° below:

35 Histogram of MC Estimates for =, (N=10%)
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4. Consider an undirected graphical model on a binary tree with 15 nodes.
Each node takes value in {—1,1}. All edges share the same potential
function ¢ (u,v) = exp(auv), where u,v are a pair of parent-child nodes.

(a) Write down the joint probability distribution defined by this graphi-

cal model.
SOLUTION:
. 1
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Where Z(«) is a partition function that we avoid trying to write
down.

(b) Let @ = 1. Let r be the root node and s be the left-most leaf node.
Use brute force (enumerating all trees) to compute p(r | s = 1).
SOLUTION:

A Dbrute force calculation yields p(r | s = 1) = 0.72087 .. ..

(¢) Implement Gibbs sampling to estimate p(r | s = 1). Start with the
all-minus-1 tree except for s = 1. Go over levels in top-down order,
left-to-right within each level. Discard a burn-in of 10* samples. Use
the next 10° samples for estimation. Do not perform thinning.
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SOLUTION:

Gibbs sampling with the prescribed burn-in and no thinning consis-
tently under-approximates p(r | s = 1), typically yielding numbers
between 0.66 and 0.7. However, we find that thinning remedies this,
yielding less-biased clustering around 0.72.

Implement Metropolis-Hastings sampling to estimate p(r | s = 1).
Clearly define and discuss your proposal distribution (which has to be
different than Gibbs). Use the same burn-in and number of samples
as above.

SOLUTION:

We implemented Metropolis-Hastings with the following proposal dis-
tribution:

1
o(#'19) = [T explsi)

i.e., each node has its own independent proposal distribution,

1

m eXp(—x;xi).

qi(} | z;) =
In other words: ¢; will propose change for z; with probability e/(e +
e~1) = .8808.... Once &’ has been proposed in this way, it will be
accepted with probability

This implementation provided estimates of p(r | s = 1) that clustered
around 0.72; even without thinning.

p(@)
p(Z)

a = min (1,

since ¢ is symmetric.
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