
CS524 Project:
StarCraft Mixed Integer Program
Fall 2016
David Merrell
dmerrell@cs.wisc.edu

I. Background

StarCraft is a real-time strategy PC game released by Blizzard Entertainment in 1998. It is widely regarded
as the defining game of the genre, receiving broad critical acclaim and many years of commercial success.
The game retains a large and loyal fanbase and is a popular e-sport, especially in Korea. StarCraft also
contributes to artificial intelligence research, serving as a testbed for agent design competitions.

The objective of a StarCraft match is to defeat one’s opponent militarily by destroying all of their assets.
Successful play entails gathering resources, building a base, building an army, and leading it to victory.
Military strategy and tactics are necessary to win, but arguably the player’s most important decisions con-
cern management of resources and production.

Generally speaking, real-time strategy (RTS) games provide rich decision spaces that share many common-
alities with real-world decision making—resource constraints, scheduling of interdependent tasks, compet-
ing priorities, and uncertainty. While an RTS game is necessarily simpler than the real world, it provides a
level of abstraction that real-world problems might be reduced to. Insights might be shared between them.

II. Problem Description

The first minutes of a StarCraft match frequently decide its outcome. During this time, players make crucial
decisions about resource management and production in order to build their bases and militaries as quickly
as possible. Players who grow the fastest are at an advantage; in some cases they are able to overwhelm
their opponents within minutes of the game’s start. This is a strategy known as “rushing”.

In this research, we built an optimization model to answer the following question: What choices in the first
minutes of a StarCraft match best prepare a player for a rush by their opponent?

Restated more clearly as an optimization problem, we ask what production and allocation choices maximize
a player’s combat strength within the first minutes of a StarCraft match, subject to constraints imposed by game
mechanics?

We chose to restrict the scope of our research to gameplay prior to any encounter with the opponent; we
are modeling growth and production, not combat. Furthermore, while StarCraft has three distinct teams or
“races” that a player might choose to be (humans or various kinds of extraterrestrials), we currently only
model gameplay for the human race (referred to as “terran” within the game).

III. Model Formulation

In order to solve this problem, we formulated a Mixed Integer Program (MIP) optimization model that
maximizes a player’s combat strength, while obeying the game mechanics of StarCraft. In formulating this
model, we had to (a) discretize time, (b) design an objective function, and (c) represent game mechanics
using linear constraints. All of the data used in this project was obtained from the “Liquipedia” StarCraft
encyclopedia: http://wiki.teamliquid.net/starcraft/Main Page.

https://www.youtube.com/watch?v=uMY922w8sZ4 
http://sscaitournament.com/
http://wiki.teamliquid.net/starcraft/Main_Page


III.a. Discretizing Time. While StarCraft is known as a “Real Time Strategy” game, it is a computer game
and operates in discrete steps (referred to as “logical steps” on Liquipedia). At “normal” game speed, there
are about 15 of these logical steps per second. Modeling at this timescale would have become unwieldy for
any reasonable duration of gameplay; if each timestep required tens of variables and tens of constraints,
then a model for five minutes of gameplay would involve tens of thousands of variables and constraints.

Fortunately, almost all of the relevant times (e.g. the time required to build each entity) were multiples of
30 logical steps, meaning that our model could use timesteps of approximately 2 seconds without incurring
undue discretization error. The only quantities that didn’t fit cleanly into the 2-second discretization were
the durations of resource-gathering sorties; in section IV, we address this shortcoming with a sensitivity
analysis.

III.b. Designing the Objective. Determining a sensible objective function was one challenging aspect of
formulating this model. There is not one obviously correct way to measure a player’s combat strength. In
a sophisticated game like StarCraft, combat strength is nonlinear due to the complementarity of different
types of entities. However, for the purposes of this model we assumed combat strength to be the sum of
individual entities’ strengths; entity strength was estimated with the following metric:

Se =fede (he + reα) . (1)

Where fe, de, he, and re are the entity’s attack rate, attack damage, health points, and attack range respec-
tively; and α is a weight describing the advantage given by attack range. This entity strength metric arises
from considering a simplified one-on-one confrontation between two entities, A and B. One finds that a
necessary condition for A to defeat B is this inequality:

fAdA

(
hA + rA

fBdB
vA

)
≥ fBdB

(
hB + rB

fAdA
vA

)
,

suggesting that entities might be usefully compared by the quantity given in (1). We found that setting
α = 0.5 yielded reasonable comparative strengths.

Finally, due to uncertainty imposed by the opponent, we let the objective be the sum of the strengths of
existing entities over all timesteps past the two-minute mark. In effect, we assume that the opponent may
attack with equal likelihood at any point after two minutes of play. In summary, our model seeks to maxi-
mize

150∑
t≥60

∑
e∈E

Se ·Qt,e (2)

where Qt,e is the quantity of entity type e that exists at timestep t, and Se is the strength of entity type e, as
given by (1).

III.c. Formulating the Constraints. Decision making in RTS games is typically subject to a variety of re-
source, dependency, and availability constraints. StarCraft is sophisticated in this respect; production is
constrained by two gathered resources (“minerals” and “gas”), and a derived resource (“supply”). Further-
more, StarCraft entities exist on a tree of dependencies; certain things must be made before other things can
be made. Each action takes time, and typically requires availability of labor.

In the end, all of the relevant game mechanics are expressed as linear constraints in our MIP. We show some
of them in this section; the remainder can be found in the sc-mip-model.gms file.

• Continuous Mineral Update. In a preliminary version of the model, we simplified resource gathering
by assuming resources accumulated continuously, at a rate proportional to the number of workers

2



allocated to them. We would later replace this with a discrete mineral update model (shown next). In
section IV, we see that this makes a substantial difference.

mineralst = mineralst−1 + mineralWorkerst−1 ·
(load size)
(sortieTime)

−
∑
e∈E

buildEntityt−1,e ·mineralCoste

• Discrete Mineral Update. Minerals are gathered in discrete loads, and spent on entity production.
Mineral gathering sorties are rounded down to 5 timesteps. In section IV, we observe only small
differences in the results by rounding up to 6 timesteps.

mineralst = mineralst−1 + (load size)(workersBeginSortiet−5)

−
∑
e∈E

buildEntityt−1,e ·mineralCoste

• Technical Dependency Tree. Production of entity type j is dependent on the existence of entity type
i for certain pairs (i, j) ∈ E2. Mj is an upper limit to the number of entity type j that might be built
in a timestep.

buildEntityt,j ≤Mj ·Qt,i

• Various Worker Constraints. Workers gather resources and build buildings. Modeling the availabil-
ity of their labor required a variety of constraints and auxiliary variables. Note that B ⊂ E is the set
of building types.

Qt,worker ≥ mineralWorkerst + gasWorkerst + buildingWorkerst;

buildingWorkerst ≥
∑
b∈B

(Qt+buildTime,b −Qt,b) ;

mineralWorkerst ≥
t∑

t′=t−5
workersBeginSortiet′ .

IV. Solves, Results, and Analysis

Four versions of the model were solved to within 0.1% of proven optimality. The first version approximated
resource gathering as a continuous process. The second version depicted the discrete nature of mineral
gathering; however, it had a weakness in that it rounded the true duration of a mineral-gathering sortie
down to 5 timesteps. The third version of the model tested the impact of this rounding down, by instead
rounding the mineral-gathering sortie duration up to 6 timesteps. The fourth version included discrete
mineral gathering and examined the effect of modifying the objective, such that workers’ combat strengths
do not contribute to the total combat strength.

All four instances were run within a total of six minutes, using the CPLEX MIP solver on a laptop PC. The
continuous mineral gathering model consisted of 6,577 equations with 5,530 variables, and was solved in
140s. The instances that included discrete mineral gathering consisted of 6,727 equations in 5,680 variables;
their solve times ranged between 30s and 80s. In each solution, the model did not progress beyond the most
basic levels of the dependency tree; this can be attributed to the model’s narrow five-minute time frame. The
results shown in figure 1 indicate that discretized mineral gathering yields substantially different results
from continuous mineral gathering, and that changes to the objective lead to large changes in the solution.

3



Figure 1: Gathering and production for different versions of the model. “No worker strength” refers to the case where
workers’ combat strengths do not contribute to the objective.

However, the difference between instances using discrete mineral gathering with 5-timestep sorties and 6-
timestep sorties is small over our five-minute timeframe. Qualitatively, the actions taken in the 6-timestep
instance are very similar to those in the 5-timestep instance, but occur more slowly.

In reviewing the four solutions, we reject the continuous mineral gathering instance for being overly op-
timistic; we reject the instance with a modified objective, due to its low production of workers (in real
gameplay, having a full complement of workers is very desirable). We take the discrete gathering instance
with 5-second sortie durations as the most viable course of action—a course of action that best prepares the
player for early confrontations with the opponent. It is displayed graphically below, with time expressed
in seconds of “normal” game speed.

4


