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Abstract

Latent variable models are widely used in industry and research, though the problem
of estimating their parameters has remained challenging; standard techniques
(e.g., Expectation-Maximization) offer weak guarantees of optimality. There
is a growing body of work reducing latent variable estimation problems to a
certain(orthogonal) spectral decompositions of symmetric tensors derived from
the moments of observed variables. Such decomposition allows a robust and
computationally tractable estimation approach for several popular latent variable
models; examples include topic mixture models, mixture of gaussians and HMM.
In this report, we extend spectral methods to yet another class of latent variable
models—topic transition models and mixture language models.

1 Introduction

Bayesian networks are a widely studied family of probabilistic models and find application in many
areas, from topic modelling to speech recognition. We refer to Bayesian networks with unobserved
variables as latent variable models. Estimating the parameters of latent variable models can be
challenging, and commonly-used algorithms have weak guarantees of optimality. For example, the
popular Expectation-Maximization algorithm only guarantees convergence to a local maximum in
likelihood.

In response to these challenges, spectral methods have arisen as an alternative technique for estimating
latent variable models. For some classes of latent variable model, parameter estimation can be
formulated as spectral decompositions of matrices and tensors derived from empirical cross-moments.
Spectral methods have been developed for a variety of latent variable models, including document
topic models, Latent Dirichlet Allocation (LDA) [1], hidden Markov models (HMMs) [4], and Gaussian
mixture models [3].

In this paper, we add to the existing work by extending spectral methods to some additional latent
variable models. Specifically, we approach topic transition models and mixture language models
from the spectral methods perspective. We chose these models, as they represent modest departures
from models treated in past works.

2 Background

In this section we give a minimal background of tensors and their decompositions; describe spectral
methods for latent variable models; and summarize results from earlier works.
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Figure 1: A third order tensor and its CP decomposition

Figure 2: A document topic model; variables x1, . . . xl are independent given the topic h.

2.1 Tensor Decompositions

Here we introduce the basics of tensors and their decompositions. Tensors are multidimensional
extensions of matrices. An N -th order tensor is an element of the tensor product of N vector spaces,
each of which has its own coordinate system. A vector is a 1st order tensor and a matrix is a 2nd
order tensor. Figure 1 shows an example of a third order tensor.

Tensor decomposition can be viewed as a higher order generalization of the singular value decom-
position (SVD) for matrices. One of the most widely used tensor decompositions is the CANDE-
COMP/PARAFAC (CP) decomposition [7]. The idea of CP decomposition is to express a tensor
as a finite sum of rank-one tensors. For example, given a third order tensor X ∈ RI×J×K , CP
decomposition would yield a tensor form like the following:

X ≈
R∑

r=1

ar ⊗ br ⊗ cr,

where R is a positive integer (the rank of the tensor) and ar ∈ RI , br ∈ RJ , and cr ∈ RK are vectors.

We will show that CP decomposition provides a way to estimate the parameters of latent variable
models from observable moments.

2.2 Overview of Spectral Methods

In the context of latent variable models, the purpose of a spectral method is to recover unknown
model parameters by performing spectral decompositions (e.g. CP) on moments of observed variables.
In this setting, such moments have the forms of tensors or matrices.

We adopt the following notation: let u⊗ v denote the tensor product of vectors u and v; i.e. u⊗ v is
a second-order tensor (uv>), and u⊗ v ⊗ w is a third-order tensor.

We guide our discussion of spectral methods with the example of a document-topic model; see figure
2 for illustration. Let h ∈ Rk be a hidden topic variable. Let x1, . . . , xl ∈ Rd be the view variables;
these correspond to the l words that appear in the document, chosen from a dictionary of d words.
We encode the topic variable h ∈ Rk in the following way: h = et (the tth standard basis vector) iff
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h is the tth topic. Similarly, we encode the word variables xi ∈ Rd as xi = ej iff xi is the jth word
in the dictionary. The practicality of this vector encoding will become apparent.

Assume the topic h is distributed according to a probability vector w ∈ Rk; specifically, P (h = et) =
w>et. Additionally, let the conditional probability of xi on h be encoded as a matrix S(xi) ∈ Rd×k;
given topic h = et, the distribution of xi is represented by S(xi)et, the tth column of S(xi). Since h
and xi are encoded as standard basis vectors, their expected values correspond to their distributions;
E [h] = w, and E [xi|h] = S(xi)h.

Our goal is to recover the unknown parameters of this model—the matrices S(xi) and the topic
probability vector w. To do this, we will (i) compute moments of the view variables xi, (ii) show
that the resulting expressions contain the unknown parameters, and (iii) show that the unknown
parameters can be recovered from these expressions.

We begin by computing M1,2, a second-order moment over variables x1 and x2; i.e., pairs of words:

M1,2 = E [x1 ⊗ x2]

=
∑
t

Pr(h = t) · E [x1 ⊗ x2|h = t]

=
∑
t

wt · E [x1|h = t]⊗ E [x2|h = t]

=
∑
t

wt ·
(
S(x1)et

)
⊗
(
S(x2)et

)
.

When S(x1) = S(x2) = S, we say the model is exchangeable. Under this assumption, M1,2 can be
reduced to a symmetric tensor form:

=
∑
t

wt · (Set)⊗ (Set)

=
∑
t

wt · µt ⊗ µt, (1)

where µt is the tth column of the matrix S. This sum is a spectral decomposition of the moment
matrix M1,2. It seems that if we can estimate M1,2 and compute its spectral decomposition, then we
will recover the model parameters w and S.

Unfortunately, an additional matter of identifiability comes into play in the case of M1,2: the
decomposition in (1) is not generally unique. For example, any of the vectors µt can be acted on by
a rotation matrix, and the resulting sum will still yield M1,2. So the parameters are not identifiable
from this decomposition.

This identifiability issue motivates the use of higher-order tensors, which have unique decompositions.
For example, the third-order moment over variables x1, x2 and x3 yields a similar expression:

M1,2,3 = E [x1 ⊗ x2 ⊗ x3]

=
∑
t

wt · µt ⊗ µt ⊗ µt,

under the same exchangeability assumption. Unlike equation (1), however, this decomposition is
unique and hence the parameters w and S can be recovered from it. Furthermore, such a symmetric
decomposition can be computed using efficient iterative power methods, as described in [3, 2]. Older
works, e.g. [4, 1] instead recover the parameters by contracting M1,2,3 with randomly generated
vectors and solving a sequence of eigenproblems on the resulting matrices; this older method is
less efficient than the iterative power method, from the standpoints of computational and sample
complexity [2].

As described in [2], spectral methods can be extended to models failing the exchangeability as-
sumption. This is done by (i) applying linear transformations to the observed variables (in effect,
symmetrizing them); (ii) performing the previously-discussed technique for symmetric tensors; and
(iii) recovering the original (asymmetric) parameters by applying inverses of the linear transformations
in step (i).
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For illustration we apply this process to the previously-discussed document topic model, removing
the assumption that S(xi) = S(xj) for all i, j. First, define linear transformations C2→1 and C3→1 as

C2→1 =M1,3M
+
2,3 C3→1 =M1,2M

+
3,2

where + denotes the Moore-Penrose pseudoinverse. Then define variables x̃2, x̃3 as

x̃2 = C2→1x2 x̃3 = C3→1x3.

As shown in [2], it follows that

E [x1 ⊗ x̃2 ⊗ x̃3] =
∑
t

wt ·
(
S(x1)et

)
⊗
(
S(x1)et

)
⊗
(
S(x1)et

)
.

Hence, the matrix S(x1) and vector w can be recovered by decomposing this moment. Furthermore,
[2] shows that S(x2) and S(x3) can be recovered via

S(x2) = (C2→1)
−1S(x1) S(x3) = (C3→1)

−1S(x1).

This method extends the reach of spectral methods to a host of asymmetric/nonexchangeable models;
e.g. LDA and HMMs [2], and Gaussian mixtures [3].

2.3 Related Works

Spectral methods for estimating parameters of multi-view mixture models and HMMs are examined
in [4]. Estimation is reduced to a sequence of eigenproblems for matrices derived from second and
third moments.

In [3] the connection between latent variable model estimation and tensor decompositions is elu-
cidated. The results of several previous works are couched in terms of low-rank symmetric tensor
decompositions, and an efficient iterative power method is proposed for computing the decomposition.
This iterative power method is shown to be more efficient than the eigenproblem-based methods from
[4].

Estimation for Latent Dirichlet Allocation is formulated as a tensor decomposition in [1], [2], and
[3], with [1] giving the most detailed exposition. [1] also establishes the symmetrizing technique for
multi-view models demonstrated in section 2.2, allowing a broader set of models (e.g., HMMs) to be
estimated via efficient symmetric tensor decompositions.

In [6], the tensor decomposition methods of Anandkumar et. al. are extended to shallow neural net-
works, under the assumption that the distribution over inputs is known. The resulting procedure trains
shallow neural networks to global optimality, avoiding the well known local-optimality disadvantages
of gradient-based techniques.

3 Extensions to New Models

In this section, we describe our progress in applying spectral methods to models beyond those
addressed in previous works. Each new model differs from previously-treated models in some aspect;
they include topic transition models and mixture language models. By applying spectral methods to
new kinds of models, we hope to further characterize the set of models that can be learned effectively
this way.

3.1 Topic Transition Models

Past works ([4, 3]) have applied spectral methods to HMMs and document topic models. In this
section, we present a model that contains aspects of both HMMs and document topic models; we
call it a topic transition model. We apply spectral methods to it, and find that it can be learnt in a
restricted manner using methods equivalent to those for HMMs.

The topic transition model is illustrated in Figure 3 where each sentence is drawn from a different
topic and a transition matrix governs the topic of the next sentence given the topic of the previous
sentence. The observables are the words in a sentence and the words are independently drawn from
the topic of the sentence. So given the topic h ∈ Rk, the words are conditionally independent.
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Figure 3: Topic transition model.

(a) First attempt (b) Second attempt

Figure 4: Mixture language models we attempted to solve. (a) In the first attempt, we fix three of the view
variables and compute moments over their immediate successors; this is then repeated for every combination
of three view variables. (b) In our second attempt, views are assumed to be part of a topic-specific transition
system, with x0 distributed according to the transition system’s stationary distribution.

Another application of these models is in activity detection where the observables are different
sensors and a transition matrix governs what activity follows next. Observables are grouped into
three categories x1a, x2a, x3a ∈ Rp; x1b, x2b, x3b ∈ Rq and x1c, x2c, x3c ∈ Rr. Think of them as
three different types of sensors. Each group follows the same conditional distribution given the
topic/activity, as encoded in the matrix S(1) ∈ Rp×k, S(2) ∈ Rq×k and S(3) ∈ Rr×k , for e.g. given
topic h = et, the distribution of x1a is represented by S(1)et, the t-th column of S(1). Let T ∈ Rk×k

be the topic transition matrix i.e. Tpq = Pr(hi = p|hi−1 = q).

We consider one group of random variables, say x1a, x2a, x3a. Suppose we condition the distribution
of the three observed variables on h2. We can see that given h2, the three random variables are
conditionally independent. Let π denote the distribution of the initial state h1. Then,

• The distribution of h2 is given by w := Tπ

• for all j ∈ [k]:
E[x1a|h2 = j] = S(1) diag(π)T> diag(w)−1ej

E[x2a|h2 = j] = S(1)ej

E[x3a|h2 = j] = S(1)Tej

This now corresponds to the case we had discussed in section 2.2 where we have one topic h and three
variables that are distributed differently conditioned on h. We can use the same algorithm to first
estimate E[x2a|h2], which gives us S(1) and then estimate E[x2a|h2] to get T . Similar procedure can
be followed for the other two group of variables to estimate S(2) and S(3). However, these matrices
are subject to permutation and we could not find a way to align them together unless the P [h] values
are distinct and come out to be very close in the three iterations or unless the matrices are identical,
which usually happens in topic models.

3.2 Mixture Language Models

The models considered in past works share an important property: their observed variables are all
independent, given some latent variable. We explored beyond that property by attempting to apply
spectral methods to a bigram mixture-language model, as described in [5] and [8]. This model is
similar to the document-topic model considered in section 2.2, but assumes additional dependencies
between words. See Figure 4 for illustration. Intuitively, it represents the topic-dependence of word
sequences in a document.
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We made multiple attempts at applying spectral methods to this model. Two particular attempts are
outlined in the subsequent subsections. In the following subsection, we try to separate the original
problem into many smaller problems by holding certain variables fixed, and solving a problem for
every combination of those fixed variables. In the subsection after that, we make a direct attempt at
computing moments for the full model and expressing them as useful spectral decompositions.

3.2.1 Attempt 1 – Condition on Fixed Observed Variables

Let k be the number of distinct topics in the corpus, d be the number of distinct words in the
vocabulary represented by V := {v1, v2, . . . , vd}, and l ≥ 5 be the number of words in each
document represented by {x1, x2, . . . , xl}. The generative process for a document is as follows: the
document’s topic h is drawn according to the discrete distribution specified by the probability vector
w ∈ Rk and then each word xi is drawn conditioned on the topic of the document and the previous
word xi ∼ µt,j where µt,j := Pr(xi|h = t, xi−1 = wj) ∈ Rd. The parameter estimation task is to
estimate w and µt,j for t ∈ [k] and j ∈ [d]. Each document is assumed to begin with a fixed start
word x0 = v0.

Given, the size of the parameter space, it seems natural to design an iterative algorithm to estimate
parameters progressively. So we begin with a restricted model. Referring to figure 4a, we fix xi = va,
xj = vb and xk = vc from the vocabulary. Under this restricted model, xi+1, xj+1 and xk+1 are
conditionally independent of each other given the fixed words and the topic. Pr(xi+1) = µh,a,
Pr(xj+1) = µh,b and Pr(xk+1) = µh,c. It will be convenient to represent these pairs of words by a
single d-dimensional random variable ∈ Rd.

Let (xi, xi+1) := y1 and y1 = ek if and only if the (i)-th word in the document is wa and (i+1)-th
word is wk (ek is the k-th basis vector in Rd). Similarly (xj , xj+1) := y2 and (xk, xk+1) := y3.

We now calculate the moment of y1, y2 and y3 under this restricted model.

= E[y1 ⊗ y2 ⊗ y3]

=
∑

1≤p,q,r≤d

Pr[y1 = ep, y2 = eq, y3 = er] · ep ⊗ eq ⊗ er

=
∑

1≤p,q,r≤d

Pr[xi = va, xi+1 = vp, xj = vb, xj+1 = vq, xk = vc, xk+1 = vr] · ep ⊗ eq ⊗ er

=
∑

1≤p,q,r≤d

∑
h

Pr[xi = va, xi+1 = vp, xj = vb, xj+1 = vq, xk = vc, xk+1 = vr, h] · ep ⊗ eq ⊗ er

=
∑

1≤p,q,r≤d

∑
h

Pr[h] Pr[xi = va, xi+1 = vp|h]
· Pr[xj = vb, xj+1 = vq|h, xi+1]

· Pr[xk = vc, xk+1 = vr|h, xj+1] · ep ⊗ eq ⊗ er

=
∑

1≤p,q,r≤d

∑
h

Pr[h] Pr[xi+1 = vp|h, xi = va] Pr[xi = va|h]
· Pr[xj+1 = vq|h, xj = vb] Pr[xj = vb|h, xi+1]

· Pr[xk+1 = vr|h, xk = vc] Pr[xk = vc|h, xj+1] · ep ⊗ eq ⊗ er

Note that Pr[xi = va|h] = 1; Pr[xj = vb|h, xi+1] = 1; Pr[xk = vc|h, xj+1] = 1 since we have
fixed these nodes to always have those values i.e. we only consider those documents which have the
chosen words va, vb and vc in the same (i, j, k)-th positions, where the value of i, j and k is variable.
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=
∑

1≤p,q,r≤d

∑
h

Pr[h] Pr[xi+1 = vp|h, xi = va]

· Pr[xj+1 = vq|h, xj = vb]

· Pr[xk+1 = vr|h, xk = vc] · ep ⊗ eq ⊗ er

=
∑
h

Pr[h]
∑

1≤p≤d

Pr[xi+1 = vp|h, xi = va] · ep

⊗
∑

1≤q≤d

Pr[xj+1 = vq|h, xj = vb] · eq

⊗
∑

1≤r≤d

Pr[xk+1 = vr|h, xk = vc] · er

=
∑
h

Pr[h]E[xi+1|h, xi = va]⊗ E[xj+1|h, xj = vb]⊗ E[xk+1|h, xk = vc]

=
∑
h

Pr[h]µh,a ⊗ µh,b ⊗ µh,c

So we have successfully decomposed the third order tensor into a sum of rank one tensors. The
problem now is to estimate E[y1 ⊗ y2 ⊗ y3]. Note that the (p, q, r)-th entry of E[y1 ⊗ y2 ⊗ y3] is

Pr (ith word = va, (i+ 1)th word = vp,

jth word = vb, (j + 1)th word = vq,

kth word = vc, (k + 1)th word = vr)

To calculate this, first we fix the three words va, vb , and vc. Next we find the index i, j, k such that
xi = va, xj = vb, xk = vc in each document. Documents are clustered based on the value of i, j, k
and the set with the highest number of documents is picked for statistical accuracy. Now the task is
estimating joint probability of the i+ 1, j + 1, k + 1 words in this document set, which can be done
by counting the occurence of each triplet of words from the vocabulary in these positions.

Design choices for va, vb, vc.

• va = vb = vc In this case the decomposition and parameter estimation problem reduces to a
symmetric exchangeable model similar to topic model.

• va = w0 6= vb, vc In this case (i + 1) becomes the 1st word and vb and vc can be set to be
equal or unequal. The model is no longer symmetric and exchangeable. However, it now
resembles the asymmetric case introduced in section 2.2 and the same techniques can be
used to make the model symmetric for parameter estimation.

Algorithm: We iteratively select va, vb, vc and use tensor decompsition to learn µh,a, µh,b, µh,c for
h ∈ [k]. So, in each iteration we can possibly learn 3× k parameters of the total d× t parameters.
However, note that the solutions in each iteration are subject to permutation so unless the values of
P [h] are distinct and come out reasonably close in each iteration we will not be able to align the µt,i

values. This is one significant limitation of this approach which made us explore if a direct joint
spectral decomposition was possible.

3.2.2 Attempt 2 – Apply spectral method directly

In this section, we describe another attempt at applying spectral methods to a mixture language
model—see figure 4b for illustration. In this attempt, we consider views that occur at some point
within a sequence of observations.

We again assume the hidden topic variable h is distributed according to a probability vector w, and
that the distribution of word xi depends on the previous word xi−1 according to a topic-specific
transition matrix, Tt; i.e., Pr(xi|h = t, xi−1 = ej) = Ttej , the jth column of Tt. Furthermore,
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we assume that the word x0 occurs sufficiently late in the sequence that its distribution is πt, the
stationary distribution of Tt.

We make a straightforward effort to compute second- and third-order moments of the variables
xi. However, it soon becomes apparent that the methods described in section 2.2 are not readily
applicable to this model. We describe our work and observations.

In order to obtain a tensor form as was done in section 2.2, we must condition on view variables as
well as the topic variable when we compute moments. For example, we condition on variables h, x1,
and x3 when we compute the following third-order moment:

E [x0 ⊗ x2 ⊗ x4] =
∑
t,i,j

Pr(h = et, x1 = ei, x3 = ej) · E [x0 ⊗ x2 ⊗ x4|h = et, x1 = ei, x3 = ej ]

=
∑
t,i,j

Pr(h = et, x1 = ei, x3 = ej) · E [x0|h = et, x1 = ei, x3 = ej ]

⊗ E [x2|h = et, x1 = ei, x3 = ej ]

⊗ E [x4|h = et, x1 = ei, x3 = ej ] .

We find the following expressions in terms of the model parameters:

Pr(h, x1, x3) = wt

(
x>3 T

2
hx1

) (
x>1 πt

)
,

E [x0|h = et, x1 = ei, x3 = ej ] =
1

x>1 πt
diag(πh)(T

>
h )x1,

E [x2|h = et, x1 = ei, x3 = ej ] =
1

x>3 T
2
hx1

diag(x>3 Th)Thx1,

E [x4|h = et, x1 = ei, x3 = ej ] = Thx3.

Hence, our third-order moment can be written as

E [x0 ⊗ x2 ⊗ x4] =
∑
t,i,j

wt ·
(
diag(πt)T

>
t ei

)
⊗
(
diag(e>j Tt)Ttei

)
⊗ (Ttej) .

It is difficult to apply existing spectral methods to this tensor form for several reasons. We immediately
see that it is not symmetric. Additionally, it is a sum over three indices (rather than one), and it is
unclear whether any of the extra indices can be eliminated. Without resolving the question about
indices, it is unclear whether the form satisfies necessary conditions for applying the symmetrization
technique described in section 2.2—specifically, it may not be possible to express each of the
conditional expectations in a manner that allows recovery of the transition matrices T . Clearly,
applying spectral methods to this model will require the invention of new techniques. We have been
unable to develop any such technique in the duration of this project.

4 Conclusions

In this report we summarized the current status of spectral methods for learning latent variable models,
and described our efforts to extend those techniques to new classes of models. We found that topic
transition models can be treated with the pre-existing spectral methods for HMMs. We also made
multiple attempts at applying spectral methods to mixture language models; one attempt yielded an
algorithm with high computational cost, while another attempt yielded a tensor form that does not fit
into currently existing techniques.

In the future, it would be worthwhile to develop the theory characterizing the correspondence between
latent variable models and tensor forms, rather than pursuing the ad-hoc, model-by-model approach
taken by existing research.
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