

Weighted Model Integration with Orthogonal Transformations

David Merrell, Aws Albarghouthi, and Loris D'Antoni

Weighted Model Integration

Weighted Model Integration (WMI) is an exact probabilistic inference method for probabilistic models. Inference in probabilistic programs can be reduced to WMI.

Rectangular Decomposition Method

SMT Formula for Rectangular Samples $H_{\varphi} \equiv \left(\bigwedge l_x \leq u_x \right) \land \forall \mathcal{X}_{\varphi}. \left(\bigwedge l_x \leq x \leq u_x \right) \Rightarrow \varphi$

from the region of integration. The probabilities of these rectangles are easy to compute.

Rectangular Decomposition can suffer from inefficient sampling.

Orthogonal Transformations to the Rescue!

The Big Idea:

Can we improve a formula's sampling efficiency by rotating or reflecting its variables?

Some questions need to be answered...

Q: What distributions will this work for?

A: Skitovitch-Darmois Theorem \Longrightarrow Only Gaussians.

Q: Rotations may introduce irrational numbers, which are bad for SMT solvers. How do we avoid that?

A: Use Pythagorean triples to generate rational Givens rotations:

We compose multiple Givens rotations to obtain a rotation matrix that (approximately) aligns the formula's faces with the axes.

Our method is related to QR-factorization by Givens rotations.

Q: Does this actually improve efficiency?

A: Yes. Rotations improved sampling efficiency for 10 of 12 probabilistic program benchmarks. In some programs, rotations made little difference either way; in others it led to dramatic improvements. For example:

Probability captured in 100s of rectangular sampling, for three example programs, with and without rotation.