Weighted Model Integration

Weighted Model Integration (WMI) is an exact probabilistic inference method for probabilistic models. Inference in probabilistic programs can be reduced to WMI.

Rectangular Decomposition Methods use an SMT solver to sample axis-aligned rectangles from the region of integration. The probabilities of these rectangles are easy to compute.

Rectangular Decomposition can suffer from inefficient sampling.

Orthogonal Transformations to the Rescue!

The Big Idea:
Can we improve a formula’s sampling efficiency by rotating or reflecting its variables?

Q: What distributions will this work for?
A: Skitovitch-Darmois Theorem \implies Only Gaussians.

Q: Rotations may introduce irrational numbers, which are bad for SMT solvers. How do we avoid that?
A: Use Pythagorean triples to generate rational Givens rotations:

We compose multiple Givens rotations to obtain a rotation matrix that (approximately) aligns the formula’s faces with the axes.

Our method is related to QR-factorization by Givens rotations.

Q: Does this actually improve efficiency?
A: Yes. Rotations improved sampling efficiency for 10 of 12 probabilistic program benchmarks. In some programs, rotations made little difference either way; in others it led to dramatic improvements. For example:

This work is generously funded by NSF Grant #1704117: Formal Methods for Program Fairness. See Quantifying Program Bias, Albarghouthi et al, OOPSLA 2017 (FairSquare) for related work.