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1 Introduction

Both Dynamic Bayesian Networks (DBNs) and Ordinary Differential Equa-
tions (ODEs) can model the evolution of a dynamical system over time.

In this note we show a relationship between DBNs and ODEs. We use
this connection to derive a DBN variant that accounts for irregular intervals
between observations. We compute the MLE for its weight parameters and
derive a Bayesian score for DBN architectures.

2 Background

We give a little bit of background about DBNs and ODEs. For our purposes
we focus on

• Gaussian DBNs with

– no dependencies within timesteps; and

– linear dependencies between timesteps.

• Linear ODEs.

2.1 DBN essentials

Suppose we have a vector of N variables that we observe at T timepoints:

~xt1 , ~xt2 , . . . , ~xtT .
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A Gaussian DBN posits the following statistical dependencies between the
observations:

~xt1 ∼ N (~µ1,Σ1)

~xti |~xti−1
∼ N (A~xti−1

,Σ) ∀i ∈ {2, . . . , T}

In other words: the values at the first timepoint are drawn from a Gaussian
distribution, and we generate the subsequent timesteps by “noisy multipli-
cation” with some matrix, A.

The matrix A defines the dynamics of a system in discrete time. The
system’s state ~x evolves as we repeatedly left-multiply with A. In effect, all
observations are separated by uniform time intervals.

We can also think of A as an adjacency matrix defining a network on the
state variables. There is an edge from xi to xj iff Aij 6= 0.

2.2 ODE essentials

A (deterministic) linear ODE model uses the following equations to describe
the evolution of vector ~x(t) over time:

~x(0) = ~µ0

~x′(t) = A~x(t)

where A is some matrix. We solve the system of ODEs by finding a function
~x(t) that satisfies the equations.

It turns out that we can solve this system in full generality. Here’s a
hand-wavy derivation:

~x(t+ dt)− ~x(t)

dt
' A~x(t)

⇒ ~x(t+ dt) ' (I + dt · A) ~x(t)

⇒ ~x(t+ k · dt) ' (I + dt · A)k ~x(t)

⇒ ~x(tf ) ' (I + dt · A)
tf−t

dt ~x(t)

⇒ ~x(tf ) = exp [(tf − t)A] ~x(t)
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That is: when we take the limit dt → 0, the matrix power (I + dt · A)
tf−t

dt

becomes a matrix exponential exp [(tf − t)A].
With that result and the initial condition, we arrive at the solution

~x(t) = exp [tA] ~x(0)

= (expA)t~x(0).

In summary: the matrix expA encodes the evolution of the system as a
function of time t ∈ R.

3 Connecting ODEs to DBNs

We can connect ODEs to DBNs by adding noise to ODEs.
Suppose a system is governed by linear ODEs encoded in matrix A. How-

ever, this time assume that the system is perturbed by a random process.
Under modest assumptions we get the following distribution for ~x after the
system evolves from t0 to tf :

~x(tf ) ∼ N
(

(expA)tf−t0~x(t0), Σ(tf − t0)
)

(1)

where Σ is a variance function with the following properties:

• Σ is increasing.

• Σ(0) = 0.

For reference, Σ(t) ∝ t for a Wiener process and Σ(t) ∝ t2n+1 for the nth

integral of a Wiener process.
Equation 1 defines a conditional probability distribution P (~x(tf ) | ~x(t0)).

It’s very similar to the conditional probability used by linear Gaussian DBNs.
However, it differs from linear Gaussian DBNs in some important ways:

• its weight parameters (expA)tf−to depend on time;

• its noise parameters Σ(tf − t0) depend on time.

This time-dependence could be useful in many settings. Classical DBNs
don’t account for non-uniform time intervals between observations, which is
unrealistic for modeling e.g., physical systems.
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However, there are issues when we try to build a probabilistic model from
Equation 1. Specifically, it’s unclear whether we can estimate the weight
parameter A (or expA) from data in a computationally efficient way. It’s
also unclear whether we can formulate a tractable network structure score
from Equation 1. Recall that we can think of A as a network adjacency
matrix; we would like some way to assign marginal probabilities to network
structures.

We are faced with a choice between model fidelity and computational
tractability, represented by ODEs and DBNs respectively. Fortunately, we
can get some of the time-dependence of ODEs while retaining the tractability
of DBNs. We do this by using the Taylor expansion of expA:

~x(tf ) ∼ N
(

exp[(tf − t0)A]~x(t0), Σ(tf − t0)
)

∼ N
(

[I + (tf − t0)A+ . . .]~x(t0), Σ(tf − t0)
)

' N
(

[I + (tf − t0)A]~x(t0), Σ(tf − t0)
)

(2)

Equation 2 is a first-order approximation of Equation 1. It incorporates the
time elapsed between t0 and tf , but only relies on the first power of A. We’ll
refer to this sequential model as an “irregular timestep DBN,” or itDBN for
short.

Some algebra yields a form much closer to classic linear regression:

~x(tf )− ~x(t0)

tf − t0
∼ N

(
A~x(t0),

Σ(tf − t0)
tf − t0

)
(3)

Equation 3 suggests that we can estimate A from irregularly spaced data by
treating it as linear regression problem on pairs of (x,∆x/∆t). The formula-
tion differs slightly from ordinary least squares since the pairs have unequal
variances and are therefore given unequal weight in the loss function.

For illustration we compute the Maximum Likelihood Estimate for A.
Define the divided difference ~∆i = (~x(ti)− ~x(ti−1))/(ti − ti−1) for notational
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convenience. We maximize log-likelihood as follows: TODO write details

L(A) ∝
∏
i

exp
[
−
]

⇒ l(A) =
∑
i

⇒ ∇l(A) =

Solving for ~av yields the maximum likelihood estimate:

~̂av = (XT Σ̃−1X)−1XT Σ̃−1~∆v. (4)

The structure of Equation ?? is intuitively satisfying. It’s a variant of the
classic normal equations, except that samples are weighted by the lengths of
their time intervals—shorter intervals get larger weights.

Other straightforward calculations yield the MLE for σ2
v :

σ̂2
v =

1

T − 1
(~∆v −X~av)T Σ̃−1(~∆v −X~av) (5)

4 A Bayesian score for itDBN architectures

Priors:
~av ∼ N

(
0, (T − 1)σ2

v(X
T Σ̃−1X)−1

)
P (σ2

v) ∝
1

σ2
v

Marginal likelihood for a single parent set:

P (pa(v) | X) =

∫
σ2
v

∫
~av

P (∆v | pa(v),~av, σ
2
v) · P (~av|σ2

v) · P (σ2
v)

= TODO: DETAILS. Complete the square; normal integral; inverse-gamma integral.

= T−|pa(v)|/2
(

∆>v Σ̃−1∆v −
T−1

T
∆>v Σ̃−1X(X>Σ̃−1X)−1X>Σ̃−1∆v

)−T−1
2
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We get a score for the whole graph by multiplying the parent set scores:

P (G|X) =
∏
v

P (pa(v) | X)
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