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Introduction

Modern biological research generates a flood of data. However, extracting
useful scientific insights from that data remains an open challenge. There
are many kinds of data, and many questions biologists hope to answer
with it.

The scenario creates a vast landscape of opportunity for computer
science and statistics. My research aims to produce practical computational
tools at certain points in this landscape. I have a particular interest in
Bayesian methods that bring prior knowledge into data analysis. I have
also stumbled into some opportunities related to the design of clinical
trials. This report outlines my efforts in each of these areas.

Overview of contents. Chapters 1 and 2 have a shared theme. Both
chapters present Bayesian inference tasks, applied to biological questions.

Chapter 1 falls under the category of completed work. It describes a
Markov Chain Monte Carlo method I developed to infer signaling path-
ways (i.e., network structures) from phosphorylation time series data.
My work in that area will appear as a proceedings paper in ECCB 2020
(Merrell and Gitter, 2020). The chapter gives a distilled presentation of
that paper.

Chapter 2 describes research that is still at an early stage. It promises
to be my most ambitious project. The idea is to infer patient-specific sig-
naling pathway activities from multi-omic data, exploiting prior knowledge
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in the form of pathway structures (the chapter defines each of these terms).
Most of this work is still ahead of me—I am still exploring different prob-
abilistic formulations. This project constitutes the bulk of my remaining
dissertation work.

Chapter 3 has a distinct theme from Chapters 1 and 2. It describes
an algorithm for designing adaptive randomized controlled trials. This
research is partially finished. I have implemented a prototype, but still
need to run some experiments and prepare a manuscript for publication.
I include it in this report for completeness. It may be one of my more
significant works as a PhD student.

Lastly, I include a coarse-grained timeline that schedules certain mile-
stone tasks. These milestones include the completion of prototypes, the
submission of manuscripts, etc. The timeline aims at a final defense and
graduation in December 2021.
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Chapter 1

Inferring Signaling Pathways
with Probabilistic Programming

This chapter presents some of my completed work. It describes a Bayesian
inference method called Sparse Signaling Pathway Sampling (SSPS). SSPS
uses Markov Chain Monte Carlo to infer the structure of a signaling
pathway—i.e., a network structure—from time series proteomic data.

This chapter gives a condensed explanation of SSPS. For a more thor-
ough presentation I refer you to the full manuscript on arXiv (Merrell and
Gitter, 2020). My code is also available on GitHub (https://github.com/gitter-
lab/ssps). I implemented SSPS in Julia, using the Gen.jl probabilistic
programming language (Cusumano-Towner et al., 2019).

1.1 Background and motivation
Signalingpathways. Cells regulate themselves via complicated biochem-
ical processes called signaling pathways. You can think of a signaling path-
way as a directed graph, where nodes represent proteins and edges rep-
resent the regulatory relationships between them. The graph generally
contains cycles, giving rise to the complicated feedback loops that make

https://github.com/gitter-lab/ssps
https://github.com/gitter-lab/ssps
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life possible. Signaling pathways are a crucial tool for understanding the
mechanisms of disease and therapy at a cellular level.

Signaling pathway inference. Over decades of experimentation, biol-
ogists have assembled databases full of commonly-observed pathways.
These pathway databases can be useful for understanding biological pro-
cesses under “typical” conditions. However, the structure of a signaling
pathway can change extensively under abnormal conditions—disease or
pharmaceutical exposure, for example. It follows that the ability to infer
customized pathway structures from condition- or patient-specific data
has high clinical value.

A variety of techniques exist for inferring signaling pathways from data.
They take diverse approaches including Granger causality (Shojaie and
Michailidis, 2010; Carlin et al., 2017), information theory (Cheong et al.,
2011; Krishnaswamy et al., 2014), logic models (Eker et al., 2002; Guzi-
olowski et al., 2013; Gjerga et al., 2020), differential equations (Schoeberl
et al., 2002; Molinelli et al., 2013; Henriques et al., 2017), non-parametric
statistical tests (Zhang and Song, 2013), and probabilistic graphical models
(Sachs et al., 2005) among others.

1.2 Original contributions
I present a signaling pathway inference technique called Sparse Signal-
ing Pathway Sampling (SSPS). SSPS builds on past works that formulate
signaling pathway inference as a Dynamic Bayesian Network (DBN) struc-
ture estimation problem on phosphoproteomic time course data (Werhli
and Husmeier, 2007; Gregorczyk, 2010; Hill et al., 2012; Oates et al., 2014;
Spencer et al., 2015).

SSPS takes a Bayesian approach, using Markov Chain Monte Carlo to
estimate a posterior distribution over possible DBN structures. My pri-
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mary contributions are (i) the relaxation of common restrictive modeling
assumptions and (ii) a novel proposal distribution that efficiently samples
sparse graphs.

The method

Probabilistic model. We first define some notation for convenience. Let
G denote a directed graph with vertices V . We can equivalently represent
G as a matrix Z of edge-indicator variables zi,j. Let X denote a time series
data set—a T×|V | matrix where the jth column corresponds to the jth
graph vertex. As a convenient shorthand, let X+ denote the latest T−1
timepoints in X and let X− denote the earliest T−1 timepoints. Lastly,
define Bj ≡ X−,paG(j), the value of vertex j’s parents at the T−1 earliest
timepoints.

SSPS aims to infer G from X. More precisely, it seeks a posterior distri-
bution P(G|X) ∝ P(X|G) · P(G). SSPS uses a Gaussian DBN as its likelihood
function P(X|G). Intuitively, it assumes linear relationships between vari-
ables and their parents:

X+,j ∼ N(Bjβj,σ2
j) ∀j ∈ {1 . . . |V |}.

An appropriate choice of priors over the DBN parameters βj and σ2
j allows

us to marginalize them away, yielding the following likelihood:

P(X|G) ∝
|V |∏
j=1

T−
|paG(j)|

2

(
X>
+,jX+,j −

T−1
T
X>
+,j(Bjβ̂ols)

)− T−1
2

(1.1)

where β̂ols = (B>
j Bj)

−1B>
j X+,j is the ordinary least squares estimate of βj.
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λj ∼ Uniform(λmin, λmax) ∀j ∈ {1 . . . |V |}

zij | cij, λj ∼ Bernoulli
(

e−λj

e−cijλj + e−λj

)
∀i, j ∈ {1 . . . |V |}

σ2
j ∝

1
σ2
j

∀j ∈ {1 . . . |V |}

βj | σ
2
j ∼ N

(
0, Tσ2

j(B
>
j Bj)

−1) ∀j ∈ {1 . . . |V |}

X+,j | Bj,βj,σ2
j ∼ N

(
Bjβj,σ2

jI
)

∀j ∈ {1 . . . |V |}

Figure 1.1: The SSPS generative model. (top) Plate notation. DBN param-
eters βj and σ2

j have been marginalized out. (bottom) Full probabilistic
specification. We usually set λmin ' 3 and λmax=15. If λmin>0 is too small,
Markov chains will occasionally be initialized with very large numbers
of edges, causing computational issues. The method is insensitive to λmax
as long as it’s sufficiently large. Notice the improper prior 1/σ2

j . In this
specification Bj denotes X−,paZ(j); that is, the parents of vertex j depend
on edge existence variables Z.

SSPS uses the following prior distribution P(G) ≡ P(Z):

P(Z|C,Λ) =
∏
(i,j)

(
e−λj

e−cijλj+e−λj

)zij( e−cijλj

e−cijλj+e−λj

)1−zij
(1.2)

where Λ = {λj | j = 1, . . ., |V |} is a set of inverse temperature variables and
C is a matrix of real-valued edge confidences cij. The inverse temperature
variables control the strength of the prior knowledge and are, themselves,
random variables. See Figure 1.1 for the full probabilistic specification.
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Inference procedure. SSPS samples from the posterior distribution us-
ing MCMC with Metropolis-Hastings updates. In each iteration, the pro-
cedure loops through the graph vertices. For each graph vertex j, the
procedure (i) updates the corresponding inverse temperature variable
λj; and then (ii) updates the vertex’s parent set with a specially designed
parent set proposal distribution.

The parent set proposal distribution is my most significant contribution
in this work. It attains efficient sampling by biasing the Markov Chain
toward sparse networks. The proposal modifies a vertex’s parent set by
choosing one of three actions: (i) “add parent”, (ii) “remove parent”, or
(iii) “swap parent” (which simultaneously adds one parent and removes
another). SSPS assigns probabilities to these actions in a way that prefers
sparse networks. Intuitively, when a parent set is “too large,” there is
a high probability of remove-parent; when a parent set is “too small,”
then there is a high probability of add-parent; and when the parent set is
“about right,” then each action has similar probabilities. See Figure 1.2 for
illustration.

After the Markov chain has run sufficiently long, SSPS discards the
first half of the samples as burn-in and computes expected values from
the second half. I used two diagnostics to identify convergence failure: the
Potential Scale Reduction Factor (PSRF) and effective number of samples (Neff).
See Gelman et al. (2014) for a detailed explanation.

Evaluating the method

Baselines of comparison. I compared SSPS against a suite of established
pathway inference techniques. These included the exact DBN inference
technique of Hill et al. (2012); a nonparametric statistical test called Fun-
Chisq (Zhang and Song, 2013); and a simple LASSO technique.
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Figure 1.2: Action probabilities as a function of parent set size. The ref-
erence size ŝ is determined from prior knowledge. It approximates the
size of a “typical” parent set. When s<ŝ, add-parent is most probable;
when s>ŝ, remove-parent is most probable; and when s=ŝ, all actions
have equal probability.

Simulation study. Simulated data allowed me to evaluate SSPS’s net-
work inference abilities, in a setting with access to “ground truth.” I
generated the data as follows:

1. Generate a random directed graph G with |V | vertices and |E| edges.

2. Let G define the structure of a DBN. Generate random parameters
for the DBN, and use that DBN to generate multiple time series, X.

3. Corrupt the graph G by randomly adding a·|E| new edges and re-
moving r·|E| original edges. This yields a corrupted prior graph, G̃.

I swept over a grid of values for |V |, r, and a, generating multiple datasets
at each point in the grid.

For each of these datasets, the task was to infer G from X and G̃. I
framed it as edge classification, using AUCPR (average precision) to score
SSPS and the baseline techniques. Figure 1.3 shows the results. Figure 1.4
shows some representative PR and ROC curves.
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Figure 1.3: Heatmap of differential performance against the (corrupt)
prior knowledge, measured by AUCPR paired t-statistics. SSPS consis-
tently outperforms the prior knowledge across problem sizes and shows
robustness to errors in the prior knowledge.

SSPS attained superior AUCPR across differing problem sizes and
amounts of corruption. It successfully scaled to larger problems than the
exact DBN method of Hill et al. (2012). Results on simulated data come
with many caveats. However, we can safely say SSPS dominates the exact
DBN method since they share very similar modeling assumptions.



10
RO

C
C
ur

ve
s

PR
C
ur

ve
s

Fi
gu

re
1.

4:
Re

pr
es

en
ta

tiv
e

RO
C

cu
rv

es
(t

op
)a

nd
PR

cu
rv

es
(b

ot
to

m
)f

ro
m

th
e

si
m

ul
at

io
n

st
ud

y.
W

e
sh

ow
cu

rv
es

fo
rt

hr
ee

di
ffe

re
nt

si
m

ul
at

io
ns

:|
V
|
=

40
,1

00
,a

nd
20

0
(l

ef
t,

m
id

dl
e,

ri
gh

tr
es

pe
ct

iv
el

y)
.E

ac
h

of
th

es
e

si
m

ul
at

io
ns

us
ed

co
rr

up
tio

n
pa

ra
m

et
er

sr
=
a
=

0.
5.



11

HPN-DREAM challenge. I measured SSPS’s performance on real data,
using the evaluation outlined in the HPN-DREAM Breast Cancer Network
Inference Challenge (Hill et al., 2016). The challenge dataset consists of
time series measured from 32 distinct biological “contexts” (combination
of cell line and chemical stimulus). The task is to infer 32 signaling pathway
structures (i.e., networks)—one for each of these contexts.

The challenge organizers have provided a set of prior edge confidences,
derived from pathway databases. I use this as the matrix C in SSPS’s prior
distribution.

The challenge aims to score methods by their ability to capture causal
relationships between pairs of variables. It estimates this by comparing
predicted descendant sets against experimentally generated descendant sets.
More specifically, the challenge organizers experimentally determined the
phosphosites downstream of the protein mTOR. Comparing predicted
descendants of mTOR against the experimentally validated descendants
gives a notion of false positives and false negatives. As we vary a threshold
on edge probabilities, the predicted mTOR descendants change, which
allows us to construct an ROC curve. The resulting area under the ROC
curve (AUCROC) is used to score the inferred networks.

I applied SSPS and the baseline methods to this task. The results are
shown in Figure 1.5. In short, SSPS attains superior scores to the exact DBN
method and comparable scores to FunChisq—a strong competitor in the
original challenge. However, closer inspection reveals a more complicated
picture: prior knowledge outperforms any of the inference techniques. This
suggests quality issues in the time series data.

Additionally, the challenge is “weak” since the descendant set of one
vertex provides little basis for scoring an entire network. Such an evalua-
tion may be useful for discarding poor methods, but has little ability to
discern between reasonably “good” methods. Bearing these caveats in
mind, SSPS’s performance on the challenge appears to be consistent with
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that of a viable method. It’s hard to say anything much stronger than that,
though.

1.3 Conclusions
SSPS uses MCMC to infer a posterior distribution over DBN structures.
Its novel parent set proposal distribution allows it to efficiently sample sparse
networks.

The results from the simulation study and HPN-DREAM challenge
show that SSPS is a viable method for signaling pathway inference. It
clearly dominates the exact DBN technique of Hill et al. (2012) in its
predictive power and scalability.

SSPS could be extended in several ways. On the algorithmic side, one
could improve sampling efficiency by adaptively tuning the parameters
in the proposal distribution during burn-in, as described by Gelman et al.
(2014). The model could be modified to accommodate causal assumptions
via Pearl’s intervention operators (Spencer et al., 2015). Alternatively,
SSPS could be extended to jointly model related pathways in a hierarchical
fashion similar to Oates et al. (2014) or Hill et al. (2017). However, I don’t
plan to pursue these during my PhD.
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Chapter 2

Multi-omic Reasoning

Similar to Chapter 1, this chapter describes a Bayesian inference task on
biological data. I aim to infer activation levels of signaling pathways in bi-
ological samples, given (i) multi-omic data from those samples and (ii)
prior knowledge about signaling pathways.

Unlike SSPS in Chapter 1, this project is far from complete. As such,
this chapter raises many questions and offers few answers. Answering
those questions constitutes the bulk of my remaining PhD research.

2.1 Background and motivation
Multi-omics and the central dogma. The central dogma of molecular
biology describes a flow of information from DNA to mRNA, and from
mRNA to protein. There exist technologies for collecting data at each level
of this process; see Figure 2.1 for illustration.

Each kind of “-omics” data offers a complementary view of a biological
system. An increasing number of techniques integrate multiple kinds
of -omics data to derive useful scientific insights. We use the adjective
multi-omic to describe these datasets and methods. See [this repository]
for a list of examples.

https://github.com/mikelove/awesome-multi-omics
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Figure 2.1: The central dogma of molecular biology. There are inexpensive
technologies for collecting genomic, transcriptomic, and proteomic data.

Pathways and pathway activation. Cells regulate themselves via im-
mensely complicated networks of interacting biochemicals. Despite the
staggering complexity, biologists have identified subnetworks of biochem-
icals that consistently cooperate with each other to produce distinct bio-
logical functions. These “subnetworks” are called pathways.

Biologists have created databases to store their accumulated knowledge
about pathways. These usually represent a pathway as a directed graph,
with vertex and edge attribute data. Several pathway databases are freely
available online.

Pathways provide a useful abstraction for understanding cellular pro-
cesses. A biologist derives useful insights about a biological system by
knowing which of its pathways are at work. Biologists use the somewhat
abstract, intuitive term pathway activation to describe the extent to which a
pathway explains the behavior of a system. A pathway may be more or
less active in a given system.

In Chapter 1 I aimed to infer pathway structures, and used pathway
database information as prior knowledge. In contrast, the present chapter



16

holds pathway structures fixed and uses them to impose strong bias in a
high-dimensional inference task.

Clinical motivation. I collaborate with the Wisconsin Head & Neck Can-
cer Specialized Program of Research Excellence (HNC SPORE). HNC
SPORE conducts scientific and clinical research for Head and Neck Squa-
mous Cell Carcinoma (HNSCC).

Part of HNC SPORE’s mission is to develop computational tools that ex-
tract clinically useful insights from multi-omic data. They are particularly
interested in estimating pathway activations for tumor samples. The idea
is to (i) take a tumor sample from a patient, (ii) collect multi-omic data
from the sample, (iii) estimate pathway activation levels in the tumor, and
(iv) use the pathway activations to tailor therapies for the patient. Such a
tool would have scientific and clinical value. I aim to build a multi-omic
probabilistic model that infers pathway activations from tumor samples.

2.2 Original contributions
Some aspects of this project are settled. Others are still subject to change.

Settled aspects of the project

Datasets. I decided to use an extensive multi-omic cancer dataset from
The Cancer Genome Atlas (TCGA). TCGA contains multi-omic measure-
ments for 11,368 cancer patients divided into 38 cancer types (The Cancer
Genome Atlas Research Network et al., 2013). Not all types of data were
collected for each patient—i.e., patients generally have missing data. You
can think of the dataset as a hierarchy; see Figure 2.2 for illustration.

I decided to use a pathway database called the National Cancer Institute
Pathway Interaction Database (NCI PID). I’m starting with a set of 138
pathways used by Vaske et al. (2010).

https://hn-spore.wisc.edu/
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Figure 2.2: The Cancer Genome Atlas (TCGA) dataset has a hierarchical
structure. Each row of the data is a feature, each column is a patient. Gray
fields indicate observed data; not all measurements were taken for all
patients.

Basic shape of the probabilistic model. At a high level, I have decided
to model pathway activations and multi-omic data with a hierarchical
Bayesian network. The idea is to allow information-sharing between pa-
tients and cancer types. See Figure 2.3 for illustration.

I define the notation appearing in Figure 2.3. Each leaf variable xi,j∈Rd

denotes the vector of multi-omic data for patient j from cancer type i.
Each latent variable α∈Rk denotes pathway activations for different levels
of the hierarchy. My task is to infer these latent variables—particularly the
patient-level ones at the bottom of the hierarchy.
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Figure 2.3: The probabilistic model will have a hierarchical structure mir-
roring that of the TCGA data. The bottom level is for individual patients.
The middle level is for the 38 cancer types.

Method evaluations. I plan to evaluate the method’s performance using
(i) simulated data and (ii) inference tasks on real data. Simulations serve
as a sanity check. They test the method’s ability to recover latent variables
in an ideal setting where data are consistent with model assumptions.

Pathway activation is an abstract, unmeasurable quantity. This makes
it difficult to evaluate our method’s performance on real data. However, I
have other ways to determine whether the method produces useful infer-
ences. For example, I can treat the method as a dimensionality reduction
technique for supervised or unsupervised learning tasks. If the inferred
pathway activations are biologically meaningful, then they should yield
improved performance on those tasks. I can also perform posterior predic-
tive tasks. This entails holding out some of the multi-omic measurements
and scoring the method’s ability to infer them. Lastly, I have access to ex-
perts in the HNC SPORE who can inspect the method’s inferred pathway
activations and judge whether they make biological sense.
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Figure 2.4: Illustration of a pathway and its corresponding extended pathway.
New DNA and mRNA nodes are added for each protein node in the
original pathway, consistent with the central dogma.

Undecided aspects of the project

Probabilisticmodel details. Our previous discussion glossed over many
important details of the probabilistic model. The most important detail is
our choice of P(xi,j|αi,j). I.e., the probabilistic connection between multi-
omic data and pathway activations. Once I make this decision, the other
conditional distributions will have natural choices.

I have a couple of concepts that I plan to explore. Both rely on an insight
introduced by Vaske et al. (2010): that pathways can define dependencies
within multi-omics data. Figure 2.4 shows how pathways can be extended
to integrate multi-omics data across the central dogma.

My first concept is based on Gaussian Graphical Models (GGMs). The
idea is to construct a multivariate normal distribution that encodes some
of the dependencies implied by the pathway structure. See Figure 2.5
for an illustration. Specifically, the normal distribution’s precision matrix
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Figure 2.5: Moralizing the directed graph yields an undirected graph with
equivalent local Markov structure. This undirected graph defines the struc-
ture of a Gaussian Graphical Model (i.e., multivariate normal distribution)
for our multi-omic data.

encodes these dependencies. In short, I have the following conditional
distribution in mind:

xi,j | αi,j ∼ N

(
0 , εI+

k∑
l=1

[αi,j]lΩl

)

whereΩl is a precision matrix constructed from the lth pathway. I assume
each feature has been standardized to zero mean, unit variance.

Another concept I have in mind is based on linear factor analysis. The
idea is to assume each multi-omic vector xi,j is a linear combination of
vectors representing the pathways:

xi,j = Bαi,j + ε

where the columns of B are the “pathway factors” and ε is a noise term.
This is mathematically simple, but raises a challenging question: how do
we “correctly” represent pathways as vectors?
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It is well known that PCA yields orthogonal B that attains minimal
reconstruction error (Shalev-Shwartz and Ben-David, 2014). PCA has many
variants (Udell, 2015). I’m interested in exploring certain graph-regularized
variants. For example, Paradkar and Udell (2017) use the following objec-
tive:

min
B

∥∥X− BB>X
∥∥2
F
− λ · tr(X>BLB>X) − λ′ · tr(B>L′B)

where L and L′ are graph Laplacians. This formulation balances reconstruc-
tion error against similarities defined by graphs.

Inference procedure details. The choice of inference procedure depends
heavily on the model. However, I plan to derive an MLE procedure for
the model I choose. Given the model’s hierarchical structure, this will be
a straightforward instance of Expectation-Maximization.

I also plan to implement a Bayesian procedure for my chosen model. Al-
ternating Direction Variational Inference (ADVI) (Blei et al., 2017) seems
promising, since the model is hierarchical and will most likely have dif-
ferentiable conditional distributions with closed-form updates. I’m also
open to other approaches such as Gibbs sampling.

Relevant works

Many techniques integrate multi-omic data for supervised and unsuper-
vised learning tasks. See [this repository] for examples. However, very
few use pathway structure to inform their analysis. PARADIGM is an ex-
ception (Vaske et al., 2010), and is the primary inspiration for this project.
PLIER (Mao et al., 2019) relates closely to the linear factor analysis concept
from Section 2.2, but only treats pathways as bags of genes.

There are several classic techniques for estimating pathway activations:
GSEA (Subramanian et al., 2005), SPIA (Tarca et al., 2009), and HotNet2

https://github.com/mikelove/awesome-multi-omics
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(Leiserson et al., 2015) are widely used. However, none of them incorpo-
rate multiple kinds of omic data or share information between samples.

GNAT (Pierson et al., 2015) is an instructive example of information-
sharing across a hierarchy of samples, though it solves a different inference
task and doesn’t integrate multi-omic data.

2.3 Conclusions
I aim to infer patient-specific pathway activations with the help of (i) multi-
omic data, (ii) knowledge of pathway structures, and (iii) information-
sharing over a hierarchy of samples. This is an ambitious project and is far
from complete. However, I have the resources to produce a viable method
and publishable research within the coming year.
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Chapter 3

A Markov Decision Process for
Adaptive Trial Design

This chapter is distinct from the others. It proposes an algorithm for
designing Block Response-Adaptive Randomized (Block RAR) clinical
trials. I am collaborating on this with Thevaa Chandereng1 and Yeonhee
Park2.

The work in this chapter is partially complete. I have already formu-
lated the problem and implemented a prototype. However, the algorithm
is subject to change and I still have many experiments to run.

3.1 Background and motivation
Block Response-Adaptive Randomization (Block RAR). Suppose we
have a new therapy and want to evaluate its efficacy with a Randomized
Controlled Trial (RCT). For the purposes of this chapter I will always
assume a two-treatment, binary-outcome trial.

1Department of Biostatistics, Columbia University
2Department of Biostatistics and Medical Informatics, University of Wisconsin–

Madison
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The most straightforward RCT design would assign patients to each
treatment in a 1:1 ratio.This maximizes the trial’s statistical power—the
probability of correctly rejecting the null hypothesis that both treatments
have equal efficacy. However, this can be undesirable since it may condemn
half the patients to receive an inferior treatment. It would be better if
we somehow balanced the trial’s statistical power and successful patient
outcomes.

One strategy for striking this balance is called Block Response-Adaptive
Randomization (Block RAR). The idea is to break the trial into blocks, which
are run sequentially. If a treatment performs well on earlier blocks, then
the next block assigns more patients to it.

Block RAR is a simple idea, but it raises questions:

1. How many blocks should we have?

2. How big should each block be?

3. How should we allocate patients to treatments, given the results of
previous blocks?

This chapter proposes an algorithm for answering these questions. I frame
a block RAR trial as a Markov Decision Process (MDP) and solve it via
dynamic programming. The algorithm yields an optimal policy; at any
point in the trial, the policy tells (i) how large the next block should be
and (ii) the treatment allocation ratio for that block.

Past approaches. Many approaches exist for designing adaptive RCTs.
See Chapter 10 of Rosenberger and Lachin (2015) for a useful overview.
Some formulate adaptive RCTs as a multi-armed bandit problem (Villar
et al., 2015). Other authors find closed-form optimal allocation ratios
under restrictive assumptions (Rosenberger et al., 2001; Chandereng and
Chappell, 2019). Another set of approaches use dynamic programming to
compute optimal designs (Hardwick and Stout, 1995, 2002).
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Our method most closely resembles the dynamic programming meth-
ods of the past. However, it does not explicitly constrain the number of
blocks in our trials. Unlike the closed-form analytical approaches, our
method optimizes the sizes of blocks in addition to the treatment alloca-
tion ratios. Lastly, our formulation does not fit the bandit setting because
it has a meaningful notion of state, and the set of actions depends on the
current state. We assume the trial has access to a finite number of patients;
as the trial progresses, the number of patients decreases and therefore
fewer actions are possible.

3.2 Original contributions
Our method treats a block RAR trial as a Markov Decision Process and
solves it via dynamic programming. I plan to evaluate the method accord-
ing to best practices for RCT designs—i.e., simulation studies. I aim to
distribute an R package containing an efficient implementation.

Markov Decision Process (MDP) formulation. A MDP is defined by
four components: (i) a state space, (ii) actions, (iii) transition distributions,
and (iv) a reward function.

Suppose we have a two-armed, binary outcome block RAR trial with
N patients. The state space S consists of all 2×2 contingency tables of size
0 through N. Four parameters define each state: s = (NA,nA,NB,nB)
where NA is the total number of patients assigned to treatment A and nA
is the number of successful outcomes for treatment A (with analogous
definitions for NB,nB). The MDP always begins at the empty contingency
table. The MDP has terminal states ST consisting of all tables with size N.
We can decrease the size of the state space by introducing a parameter κ,
the block size increment. The idea is to constrain the size of each block to be
a multiple of κ. See Figure 3.1 for an illustration of S.
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Figure 3.1: An illustration of the state space for N=100 patients and block
increment κ=1. In this example, the state space contains all 2×2 contin-
gency tables of size 0 through 100. All of the tables of size 100 are terminal
states—the trial ends when all patients have participated.

Actions in the MDP correspond to possible designs for the next block
of the trial. Each action has two components—the block size β and the
fraction allocated to treatment A, φ. We assume φ is chosen from a discrete
set Φ; for exampleΦ={0.2, 0.3, . . . , 0.7, 0.8}.

Given a state s and action a=(β,φ), the MDP draws the next state
s′ at random from a transition distribution: s′ ∼ t(s,a). In particular, we
assume the patient outcomes are governed by binomial distributions,
whose parameters are MAP estimates from the outcomes thus far.

n′
A ∼ Binomial

(
round(β·φ), nA +M·γ

NA +M

)

n′
B ∼ Binomial

(
β− round(β·φ), nB +M·γ

NB +M

)
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Figure 3.2: For a given state s and action a, the MDP transitions to a new
state in a random fashion. The randomness is governed by a transition
distribution, t(s,a). In this illustration, s = (16, 10, 14, 6) and a = (10, 6).
The MDP must transition to a state with 40 patients, but some of those
states are more probable than others.

whereM shrinks the estimate toward γ.
Lastly, the MDP has a reward function R(s, s′). The goal of a MDP is

to maximize expected reward. Recall that we want to design trials that
balance (i) statistical power and (ii) successful patient outcomes. With
that in mind, consider the following utility function:

U = E {W(sT ) − λFF(sT ) − λBB}

where W(sT ) is the trial’s test statistic, evaluated at the end of the trial;
F(sT ) is the total number of failures in the trial; and B is the total number
of blocks in the trial. The expectation is with respect to random histories.

We translate this utility into the “expected reward maximization” frame-
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work by crafting the following reward function:

R(s, s′) =

W(s′) − λFF(s
′) − λB s′ ∈ ST

−λB otherwise
(3.1)

For now we let W(sT ) be the Wald statistic of a hypothesis test, with
null hypothesis H0 : pA = pB. That is, the null hypothesis gives equal
probability of success to both treatments.

Solving theMDPvia dynamic programming. The algorithm is a straight-
forward dynamic program. We solve the following recurrence

U(s) =W(s) − λFF(s) ∀s ∈ ST

U(s) = max
a

Es′∼t(s,a) {R(s, s′)) +U(s′)} ∀s /∈ ST ,

iterating through the states in order of decreasing size. The algorithm
computes expected values exactly, by enumeration. It memoizes results
along the way. The algorithm has this time complexity:

O

(
|Φ| ·N7

κ2

)
which looks prohibitively expensive. However, if we let κ increase with
N (e.g., κ = N/10) then the complexity decreases to O

(
|Φ| ·N5). In

preliminary runs, the prototype solves realistic problem sizes (N = 100, a
phase II clinical trial) in minutes.

Evaluating performance. A simulation study is the standard way to
evaluate RCT designs. At a bare minimum, our algorithm must attain
satisfactory power (> 80%) and type I error (6 5%).

I also plan to compare the algorithm against relevant baselines—e.g.,
the past works mentioned above. Since the algorithm is designed to maxi-
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mize a specific utility function, it ought to attain higher utilities than other
methods.

Implementation and code availability. I aim to write an efficient im-
plementation in C++ and distribute it in an R package. My prototype
is currently single-threaded and unoptimized. The dynamic program
is embarrassingly parallelizable, so I would be remiss not to implement
multi-threading.

This by itself seems to be a worthwhile contribution. None of the
related dynamic programming works provide any code at all.

Other questions I plan to answer.

• How sensitive is the algorithm to “prior” parameters M and γ? Is
there a reasonable heuristic for setting them?

• The utility function contains two free parameters: λF and λB. What
does the Pareto frontier of optimal designs look like as those param-
eters vary? Does it reveal anything surprising about the tradeoffs
between statistical power, patient outcomes, and number of blocks?
Is there a sensible way to set these parameters?

• How does the block increment κ affect the utility of a trial design?

• Can a design for a small trial be used to guide a larger trial? This
may be useful given the algorithm’s computational expense.

3.3 Conclusions
This project differs from the others described in this report. I am confi-
dent in its value for multiple reasons: (i) it improves on past dynamic
programming approaches in substantive ways; (ii) as a multi-objective
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optimization problem, it may reveal something interesting about tradeoffs
between statistical power and patient outcomes; and (iii) I’m delivering
an efficient and accessible software package, filling a gap that exists in the
area of adaptive trial designs.
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Timeline

• Fall 2020

– Multi-omic Reasoning

� Acquire data
� Head and Neck Cancer data (TCGA)
� Other kinds of cancer data (TCGA)

� Build the evaluation pipeline
� Simulation study
� Test on held-out data
� Clustering/identifying clinically significant groups

– Block RAR Optimization

� Finish prototype
� Build the evaluation pipeline

– Dissertation

� Write preliminary report
� Complete preliminary exam

• Spring 2021

– Multi-omic Reasoning

� Implement prototypes, continually make improvements
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� “Linear regression” model class
� GGM model class

� Obtain code for baselines of comparison; incorporate into
evaluation

– Block RAR Optimization

� Finish evaluations
� Write journal article (Biostatistics)
� Submit article for review

• Summer 2021

– Multi-omic Reasoning

� Finish evaluations
� Write journal article (Bioinformatics)
� submit article for review

– Block RAR Optimization

� Do any additional work necessary for review and publica-
tion

– Dissertation

� Begin writing dissertation

• Fall 2021

– Multi-omic Reasoning

� Do any additional work necessary for review and publica-
tion

– Block RAR Optimization

� Do any additional work necessary for review and publica-
tion
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– Dissertation

� Finish writing dissertation
� Thesis defense
� Submit dissertation
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