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Abstract

Our goal is to construct a Bayesian model that allows us to reason
about (i) pathways and (ii) multi-omic data. We take inspiration from
PARADIGM, but want a tool that (a) can integrate more kinds of
data; (b) treats pathway activation as a first-class model variable, and
models the pathway activations jointly; (c) is more computationally
efficient; (d) is informed by modern probabilistic modeling tools. In
this document I brainstorm some model ideas.

It turns out that my model ideas share some common features.
Each model does two things:

• Each assigns a precise meaning to pathways.

• Each tells a mathematical story that connects pathways to ob-
served (and unobserved) data.

1 “Steady State Diffusion” Model

• Overview

– This model is based on a couple of core premises:

∗ (1) Pathways describe the dynamics of a system that
evolves over time.

∗ (2) Our data are measured after the system has reached
a steady state.
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Figure 1: Schematic of the steady state diffusion concept.
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– This “steady state” formulation solves a tough conceptual
issue: biological systems are dynamic, but our measure-
ments are static (assuming we don’t have time series data).

– Premise (2) may or may not be correct. But I can’t think
of any better way to relate the data to a dynamical system.

• Model Details

– Pathway ↔ dynamical system

∗ Let there be K pathways represented by adjacency ma-
trices A1, . . . , AK .

· Let the pathways include d DNA, RNA, and protein-
level entities, just as in PARADIGM.

· They may include other entities as well (e.g., abstract
processes or phenotypes like “apoptosis”). Again,
just as in PARADIGM.

∗ For each pathway Ak let there be a pathway activation
variable αk ≥ 0.

• Inference on this model

– Variational Bayes; ADVI

2 “Hierarchical Precision Matrix” Model

• Overview

– A pathway depicts a set of independencies and correlations
between variables.

∗ The directed network structure implies a set of con-
ditional independencies between variables, just as in a
directed graphical model.

∗ The promoter/inhibitor relationships imply positive and
negative correlations between variables, respectively.

– A precision matrix (inverse covariance matrix) is perhaps
the most straightforward way to capture all of these rela-
tionships (under an assumption of normality).

– The idea is to translate pathways into a precision matrix,
and assume a patient’s data is drawn from the corresponding
multivariate normal distribution.

• Model Details
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Figure 2: Schematic of the hierarchical precision matrix concept.
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– Standardize the data (make each variable’s marginal distri-
bution N (0, 1))

– Let there be K pathways, represented by directed graphs.

∗ Let the “pathways” include d DNA, RNA, and protein-
level entities just as in PARADIGM

∗ They may include other entities as well (e.g., processes
or phenotypes like “apoptosis”). Again, just as in PARADIGM.

– For each pathway, construct a precision matrix Ωk.

∗ There exists a straightforward way to do this if all the
variables are continuous/normally distributed.

· Initiate the precision matrix with zeros: Ωk ← 0.

· Eliminate all 1-cycles and 2-cycles in the directed
graph (k-cycles are okay, for k > 2.)

· Assume each variable X is a linear combination of
its parents Y . For promoter parents the coefficient
is positive. For suppressor parents the coefficient is
negative.

· For each variable X ∼ N (a>Y, σ2), update Ωk with
the following rule:

Ωk ← Ωk +
1

σ2

[
1 a>

a aa>

]
(More accurately, the rule updates a submatrix of the
full d×d precision matrix Ωk. The upper/left dimen-
sion corresponds to X; the lower/right dimensions
correspond to the parents Y .)

· Remarkably, this produces a consistent joint distribu-
tion even in the presence of k-cycles (k > 2). (NEED
TO PROVE/DISPROVE)

∗ If there are discrete variables, then it gets more compli-
cated. I’m still thinking about ways to handle them.

– For each pathway, let there be an activation variable ak ∈
(0, 1).

– Construct an aggregate precision matrix Ωagg from the pathway-
specific Ωks:

Ωagg =
1

K + 1

(
I +

∑
k

Ωkak

)
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– Treat Ωagg as the parameter for a Wishart distribution; draw
a final precision matrix Ω̂ from it:

Ω̂ ∼Wn(Ωagg, d)

– Assume that the patient’s observed and unobserved data are
distributed by a multivariate Gaussian, conditioned on Ω̂:

X ∼ N (0, Ω̂)

• Inference on this model

– Variational Bayes; ADVI
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